高级检索

    基于平滑流式预测误差滤波的多道反褶积方法

    Multichannel deconvolution based on smooth streaming prediction error filter

    • 摘要: 地震反褶积是提高地震资料分辨率的有效方法,在偏移成像和储层预测等领域发挥着重要作用。传统的反褶积方法通常基于平稳条件采用逐道反演策略进行,虽然可以在一定程度上提高地震记录的分辨率,但缺乏空间约束会导致处理结果的空间连续性较差。因此,提出了一种基于流式预测误差滤波器的多道反褶积方法。该方法利用时间和空间约束实现多道自适应反褶积,提高非平稳地震数据反褶积结果的空间连续性。同时,引入平滑矩阵,有利于保护边界和地质构造不被模糊化,对于地质构造复杂的地区尤为重要。新的反褶积方法能有效提高地震数据的纵向分辨率,同时,经过流计算减少计算量,适合处理非平稳的大规模数据。合成数据处理结果表明,加入空间约束能够改善反褶积结果的空间连续性,实际数据处理结果验证了该方法的有效性和实用性。

       

      Abstract: Deconvolution is an effective method for improving seismic resolution of imaging and reservoir prediction. Traditional deconvolution is usually implemented through trace-by-trace inversion under stationary conditions, and improved resolution cannot offset poor spatial continuity owing to the lack of spatial constraints. This paper proposes a multichannel deconvolution method based on a streaming prediction error filter, which uses temporal and spatial constraints to achieve multichannel adaptive deconvolution and improve the spatial continuity of non-stationary seismic data after deconvolution. A smoothing matrix is employed so as not to blur boundaries and geological structures, particularly complex structures. The new deconvolution method can effectively improve the vertical resolution of seismic data and reduce the workload through streaming computation, making it suitable for non-stationary big data. The processing results of synthetic data show that spatial constraints improve the spatial continuity of deconvolution, and a field data test verifies the effectiveness and practicality of this method.

       

    /

    返回文章
    返回