高级检索

    基于稀疏分解的高波数全波形反演方法

    A high-wavenumber full waveform inversion method based on sparse decomposition

    • 摘要: 复杂储层成像与描述对速度建模精度提出了更高的要求,高波数全波形反演方法是实现高精度速度建模的有效途径之一。要解决高波数全波形反演中存在的不稳定及局部极值问题,需要引入多尺度反演策略。采用局部峰值约束的稀疏分解方法,实现高精度、高时频分辨的时间域地震数据分解,并构建了基于稀疏分解的全波形反演算法,实现由低波数至高波数的逐级反演以恢复速度模型,为储层成像与描述提供高精度速度场。数值模型测试结果表明,基于稀疏分解的高波数全波形反演不但提高了反演的稳定性,而且能获得高精度速度模型。实际资料应用结果表明,高波数全波形反演速度建模在一定程度上可以直接进行储层描述。

       

      Abstract: Complex reservoir imaging and characterization impose higher requirements on the accuracy of velocity modeling. High-wavenumber full waveform inversion (FWI) is an effective way to realize high-precision velocity modeling. To address the instability and local minima issues inherent in high-wavenumber FWI, appropriate multi-scale inversion strategies are required. This study implements high-resolution time-frequency decomposition of time-domain seismic data through a local peak-constrained sparse decomposition method, and constructs a sparse decomposition-based FWI algorithm. This approach enables multi-scale inversion from low to high wavenumbers to reconstruct the velocity model, thereby providing a high-accuracy velocity field for reservoir imaging and characterization. Numerical model tests show that sparse decomposition-based high-wavenumber FWI enhances inversion stability and yields high-precision velocity models. The application to practical data shows that reservoir description can be directly carried out using the velocity model derived from high-wavenumber FWI to a certain extent.

       

    /

    返回文章
    返回